
An Online Approximate Stream Processing
Framework with Customized Error Control

Xiaohui Wei, Yuanyuan Liu, Xingwang Wang) , Shang Gao
College of Computer Science & Technology, Jilin University, China

Abstract—In online approximate stream processing, customers
generally submit their requests with some specific quality re-
quirements (e.g. maximum error). This raises a critical problem
that online quality control is necessary to meet customized re-
quirements. Since continuous arriving data needs to be processed
immediately, it brings the difficulty of acquiring knowledge
which significantly affects the efficiency of sampling. Hence, it’s
more challenging to ensure a prescribed level of quality without
knowledge about data. In this paper, we present an adaptive ap-
proximate processing framework for online stream applications
to address the challenges mentioned above. Specially, we first
design a new data knowledge learning scheme to stratify the
arriving stream data. Then, based on the online learning results,
we propose a dynamic sampling strategy with the consideration of
the stream rate. Finally, we further present a double-check error
control mechanism to manage the output quality. Experiments
with real world datasets show that the proposed approximate
framework is not only applicable to different data distributions,
but also provides a customized error control.

I. INTRODUCTION

Online stream processing can transform continuous raw data
into valuable information, which is widely applied to various
fields including network traffic monitor [1], sensor-based mea-
surement networks [2]. Among them, data continuously arrives
and users are concerned about real-time analysis results, such
as querying within a specific time period.

However, because of the considerable data volume and
quick arriving rate, processing big data streams is still chal-
lenging, resource-consuming although it can be processed by
general distributed stream processing systems (DSPS) [3].
In this case, approximate computing as an effective solution
paradigm, can be applied to obtain results quickly while
ensuring the specified level of accuracy [4]. Combined with
distributed processing models (e.g. Spark [3]), approximate
computing is attracting more attention to achieve low latency
and efficient resource utilization.

The common approximate technique applied in large-scale
analysis is sampling. Sampling-based approaches have been
extensively studied for aggregation queries [4]. The efficient
sampling method can process large datasets to get a smaller
sample dataset on which queries are executed to return a
customer-satisfied result. The customer requirements can refer
to either a desired error bound, or query response time [5],
and the efficient sampling strategy should be configurable so
as to satisfy different user requirements.

) : Corresponding author, Email: xw.wang1990@gmail.com

General sampling methods can be executed based on the
known or predictable data knowledge (e.g. distribution, max-
imum, minimum). Most existing works assume the charac-
teristics of arriving data can be obtained from historical logs
[6]. The preprocessing operation is used to make preparation
for the sampling operation. However, these strong assumptions
may lead to inconsistent prediction that produces ineffective
samples for online processing. Compared with stored data sets,
it’s more difficult to make effective cognition for real-time data
stream processing. Since online stream data continuously ar-
rives without being stored and the data knowledge is unknown
in advance. Different from assuming a priori knowledge in
existing works, we develop an online data cognition in order
to better adapt to the dynamic change of stream data.

Besides, approximate computing can not only improve
processing performance, but also ensure the output meets a
prescribed level of quality. The quality requirement is gener-
ally specified by users, such as maximum or average error,
response time, etc. Especially in real-time stream processing
where data is not being stored, it’s more necessary to check
the output to assure its quality so that the unsatisfactory results
can be timely corrected.

Currently the existing studies tend to provide an error
guarantee [6]. In more detail, when sampling a dataset, there
will return an approximated result with a theoretical error
bound within the interval where the true value falls with a
high possibility (known as confidence). However, owing to
the probability of sampling, it’s possible that approximate
computing produces unacceptable errors, which will affect
the final output quality and reduce customer satisfaction [5],
[7]. Hence, the online quality control for processing stream
data is necessary, which has not been considered in existing
works. To make effective output quality, we need to design
online strategies to control approximate results for customized
requirements, which is the goal of our work.

In conclusion, there are two critical problems to address for
online stream processing: online data cognition and quality
control. To tackle these problems, we propose a general
approximate stream processing framework in this paper. The
framework is composed of three main components: a new
data learning scheme, a dynamic sampling strategy and a
customized error control mechanism. Online data learning
scheme is designed to acquire the overall data distribution,
which will be updated in realtime. Then the dynamic sam-
pling strategy makes sampling with the consideration of the
fluctuating stream rates. Without requiring application-specific

978-1-5386-2542-2/18/$31.00 c© 2018 IEEE

rs<Tsl

Random & bSRS

rs >Tsl

bSRS & bSRS

feedback

U
p
d
a
te
ω

Re-sampling

output

ω

feedback

sw
itch

Delete leaf nodes

In
p
u

t S
tream

C
u
sto

m
er

req
u
irem

en
ts

E
rro

r C
o
n

tro
l

correction

detection

Dynamic Sampling Strategy

Stratification

Strategy

Approximate Processing

Range

Setting (min,max)

Data learning

E
rro

r C
o
n

tro
l

Figure 1: A general approximate processing framework over
online data stream.

approximate algorithms, the sampling module can execute
a self-adjusting computation. Furthermore, the error control
module leverages an output-based method to detect output
and find errors that need to be corrected. With these modules,
our designed approximate framework can effectively process
online stream data and adaptively meet different customized
requirements.

Our contributions of this paper are as follows:
(1) We propose a new online data learning scheme with a

triggered weight update strategy. The scheme can analyze the
constantly arriving data to make a weighted stratification.

(2) We present a dynamic sampling strategy that switches to
different sampling methods based on the varying stream rates.

(3) We design a customized error control mechanism, which
provides a feedback mechanism to detect and timely correct
large errors.

(4) Experiments with real-world datasets are conducted
to validate the effectiveness of our proposed approximate
processing framework.

II. DESIGN OF APPROXIMATE MODULE

In this section, we present the online approximate pro-
cessing module including online data learning and dynamic
sampling strategy.

A. Online Data Learning

Firstly, we design a stratification strategy to make a new
data cognition. The online data learning adopts a divide-
and-conquer method. Considering the data distribution is a
critical factor for online stream applications, the stratification
strategy progressively divides the stream according to the value
range of data. Then at the end of partition, each sub-range
corresponds to a weight and is converged to the final learning
result.

1) Data Range Setting: Before stratification, the value
range of stream data (min, max) need be set. To online get
the value range, we utilize the idea of invalid timer that is
applied in network routing protocol to set the value range [8].
For real data stream, the varying stream causes that the value
range may change over time. To adapt the online stream data,
we first present a dynamic range update scheme based on a
timer.

Random
sampling

min max

n

(1)

min maxmid
1

11w 1

12w

(2)

min mid
2

11w 2

12w

maxmid
2

23w2

22w

min maxmiddddd m
... ... { } { }{ }1 2 1 2, , ,

m m
S S S w w w} { }}1 2 1 2} {1 2 1 21 2 1 2} {m m} {1 2 1 21 2 1 2} {1 2 1 21 2 1 21 2 1 2} {S1 2 1 21 2 1 21 2 1 21 2 1 21 2 1 2w w w1 2 1 21 2 1 21 2 1 21 2 1 21 2 1 2m mm m1 2 1 21 2 1 21 2 1 21 2 1 21 2 1 2{{

3

11w

.
.
.

3

12w
3

21w 3

22ww(3) 3

31w 3

32w 3

41w 3

42w

min mid mid max

(L)

.
.
.

Figure 2: The process of stratification with the binary tree.

To explain the process, we use the minimize value as an
example. There are two parameters: the setting minimum
min and the observed minimum mino. Initially, a timer is
empirically set and the value range can be set randomly. When
data arrives and the timer isn’t expired, we compare the value
of min and the update observed minimum mino as follows:
if detecting mino = min, the timer is reset; if mino < min,
then we update min with mino and reset the timer. Moreover,
when the timer is expired, we also need to reset the timer and
update min with mino that represents the recent minimum
value. Through the control of the timer, the value range can
be online gotten and dynamically updated.

2) Stratification Strategy: With the current value range, the
method needs to divide the arrival data set into two or more
strata while each stratum selects different and appropriate
weights. Figure 2 shows we use a binary tree structure to
express the process of weight selection. Firstly, an item set
derived by random sampling scheme can be obtained, which is
the reference sample in the following stratification phase. For
random sampling, the sampling weights from the minimum
to maximum at this phase are same. Assume the average
estimated by random sampling is v̂0.

In the first level, data items are divided into two strata
according to their value ranges, respectively (min, mid) and
(mid, max). With the value of v̂0, we can firstly analyze the
weights of these two strata, denoted as ω1

11 and ω1
12. After

stratification, the average value of each stratum can be obtained
based on data items from each stratum, denoted as v̂111 and
v̂112. Then the estimated average value of the first level can be
computed:

v̂11 =
1

2
v̂111 +

1

2
v̂112 (1)

Compared with the initial value v̂0, the weight of each sub-
range (ω1

11 or ω1
12) can be modified. The modified weight

is based on the definition that the sampling weight is the
reciprocal of the inclusion probability: ωi = 1

πi
, where πi

is the probability that unit i is included in the sample [9].
Denote β as the proportion tuning parameter and we utilize β
to adjust the values of ω1

11 and ω1
12. Through comparing v̂111

and v̂211, there are:
(1). If v̂0 ≥ v̂11 , set (1

2 + β)v̂111 + (1
2 − β)v̂112 = v̂0 where

ω1
11 = 1

1
2+β

and ω1
12 = 1

1
2−β

.

(2). If v̂0 < v̂11 , set (1
2 − β)v̂111 + (1

2 + β)v̂112 = v̂0 where
ω1
11 = 1

1
2−β

and ω1
12 = 1

1
2+β

.
Two conditions (1) and (2) correspond to different propor-

tions of two sub-ranges. Hence, the weight values at these two
strata can be modified as the above rules in the first phase.
Then as shown in Figure 2, each stratified value range will be
further divided to two child nodes with smaller value ranges
in the next level.

For each child node, a smaller stratum will get a new
weight value using the same method as described in the first
level. Through comparing the approximate result with the
result generated by random sampling, the scheme modifies
the original stratified weights. For instance, the first step is to
adjust the weights ω1

11 and ω1
12 based on the values of v̂111,

v̂112 and v̂0. The modified weights will be set as the reference
weights of the next stratified sampling until the partition ends.
For better description, let the tree height of stratification be
L that depends on the difference between the maximum and
minimum value of the sub-range. In the weight computing
phase, a weight learning threshold Tω is also needed to end
the process of weight modification. Eventually, at each phase
the weights are modified as stream data constantly arriving.

In the end of stratification, our proposed method partitions
the value range of the whole data items into m strata, Si =
[ai, bi] , i = 1, · · · ,m, which corresponds to the leaf nodes
of the tree, and each stratum owns a weight, ωi. With these
stratified weights, a sampling scheme can be constructed to
process the real-time data stream. When the value range is
changed over time, we can make new stratification based on
the updated range to generate more representative samples.

B. Dynamic Sampling Strategy

As mentioned above, the dynamic approximate strategy is
closely related to the varying stream rate. Firstly we denote Tsl
as the low threshold of the data arrival rate, and the system can
set the value of Tsl according to its processing capacity. The
approximate processing module shown in Figure 1 describes a
complete execution for online data stream. The current stream
rate is used to trigger the switch of approximate methods.

Instead of using only one sampling method, the strategy
switches the sampling schemes with the change of data arrival
rate. The switching of sampling methods aims to present a
feedback for weight adjustment. Here a stratified reservoir
sampling algorithm (bSRS) described in Algorithm 1 can
be seen as a basic sampling method for each processing
window. Algorithm 1 leverages a hash mapping method to
stratify the arriving stream. Based on the weights gotten from
stratification strategy, it allocates the sample sizes for each
stratum and then fills each sample set using a conventional
reservoir sampling (CRS) [3]. When the sub-sample set is
full, we use a probability ni

|Si| to accept or reject the item
and it is consistent in each stratum to ensure equal inclusion
probability. Then if accepted, we replace a randomly selected
item from the sub-sample set with the arriving item.

With the basic sampling algorithm, the dynamic sampling
strategy (DSS) is described as follows. Assume the current

stream rate is rs. If rs < Tsl, we select to perform both the
random sampling and bSRS algorithm; otherwise, if rs ≥ Tsl,
two stratified sampling methods can be executed in parallel.
Executing sampling twice, on one hand, can give a feedback
to update weights for the stratification phase. On the other
hand, the result comparison between these two methods can
be utilized to detect the probability of error occurrence, which
will be described in the next section.

Algorithm 1 A Basic Stratified Reservoir Sampling (bSRS)

Require: a real-time data stream, sample size n, weight set {ωi}
1: sample← ∅;
2: if the set {ωi} is updated then
3: Update the input ωi;
4: end if
5: for each current processing window do
6: Compute the sub-sample size ni in each stratum Si according

to input ωi and n;
7: for the arriving item belonging to stratum Si do
8: if (|sample[i]| < ni) then
9: sample[i].add(item);

10: else
11: p← ni

|Si|
;

12: sample[i].replace(a random item, p);
13: end if
14: end for
15: end for

III. CUSTOMIZED ERROR CONTROL MECHANISM

Although these approximate techniques can provide signif-
icant performance gains, it’s still difficult and even expensive
to monitor the output quality, especially for online stream
data. An exact bootstrap for accuracy estimation needs

(
2n−1
n−1

)
resamples where n is the sample size [7].

Currently, most researches concentrated on how to obtain
effective approximated results with bounded errors. In theory,
the bounded error is given under the condition that the
exact result with at least δ-probability falls in the confidence
interval. Owing to the probability of sampling, it may exists
the situation that the output error is too large to provide
satisfactory results. Although approximate methods provide
error bound guarantee, sometimes the accuracy requirement
of output results may still be unsatisfied from customers’
view. Thus, in order not to affect the final output quality,
we need to propose solutions to reduce these unacceptable
results. With different requirements, we present a customized
error monitoring strategy to detect and correct the approximate
outputs.

Error detection. To evaluate and manage the output quality,
it’s important to ensure the error monitor model has low
overhead. With the requirement, we leverage two samples to
evaluate the quality of approximate output. Relative to the
total dataset, it’s light-weight to make comparison between
two samples.

Assume the above approximation methods simultaneously
produce two samples, denoted as S1 and S2, respectively. Then
we compute two estimated AVG values, ˆ̄v1 and ˆ̄v2. According

RS/bSRS

bSRS

1 2

1
| |

window

v v
window

-

£ D

å | || || || || || || || | Y

Output result

N
DSS

S1

S2

Error detection and correction

1 1,
S
ve v

2 2,
S
ve v

First
detection?

(1) Re-sampling

(2) Delete leaf nodes
Stratification

Strategy
N

Y

Figure 3: The error detection and correction mechanism.

to the estimation theory of error bounds, these two AVG values
are defined as: ∣∣ˆ̄v1 − v̄

∣∣ ≤ εS1
(2)

Similarly, it’s also established for ˆ̄v2 with εS2
. v̄ is the exact

AVG value and εS1
, εS2

are the corresponding error bounds
about samples S1, S2.

Therefore, in theory, the difference between two estimated
values should satisfy the inequality:∣∣ˆ̄v1 − ˆ̄v2

∣∣ ≤ εS1
+ εS2

= ∆ (3)

For simplicity, let ∆ = εS1
+ εS2

that represents the error
bound obtained from user requirements. We use the value
of ∆ as a criterion to estimate the probability of a large
error. For the maximum error constraint, if the comparison
result does not satisfy Eq. (3), then the detection module will
report an error. For the average error, the module will compute
the average of multiple comparison results. We assume the
sampling phase generates samples with the same error-bound,
denoted as εS1

= εS2
= εS .

Error correction. If the error detection model detects
unacceptable errors, we simply utilize the re-sampling method
to correct the output. Since it is feasible to re-sample data
of the current processing window, the output quality can be
improved by timely correcting unsatisfactory results.

Error control mechanism. Next we propose a scheme
for the output-based error detection and correction as shown
in Figure 3. Our proposed approximate schema above first
generates two samples for comparison, and then outputs the
computed values by reference to their estimated error bounds.
The computed results and corresponding error bounds are
the inputs of error detection. When considering the maxi-
mum error, each time we detect the current window where
|window| = 1 . If the difference of two estimated values
is larger than ∆, we can assure that at least one of the two
samples produces a large error. For the average error, we need
to compute the average value of comparison results generated
by multiple windows during the given time period. Once there
are unsatisfactory results, the error detection module will give
a feedback to the Dynamic Sampling Switch (DSS) module.
The feedback notifies to re-sample data in the current stream
processing window to make correction.

The process of double-check error detection aims to provide
quality-assurance output. When monitoring a large error, we

will judge whether it is first detected. If so, the decision is
to re-sample data. Otherwise, the module will feed back to
the stratification strategy for weight adjustment. Because we
think this case cannot be well corrected only by re-sampling,
and the sampling weight also need to be improved to generate
more accurate results. Before re-sampling, we delete the leaf
nodes in the stratification binary tree and go up to select their
father nodes as the reference of sampling weights. The new
stratification can be implemented by the weight update strategy
discussed in the next section.

Taking both re-sampling and weight adjustment into accoun-
t, we can assure the output quality with a higher probability.
As previously mentioned, executing two sampling schemes
concurrently aims to update weights and compute the value of
∆. Then the results of error detection in turn are beneficial to
update weights for better approximate outputs. These proposed
modules correlate to each other and the whole approximated
processing framework will be well trained so that it can be
used to directly process subsequent real-time stream data.

Then, we theoretically analyze the improvement of output
quality when launching the error correction mechanism. De-
note the confidence values of the two samples as δ1, δ2, and
assume that δ1 = δ2 = δ.

Theorem 1. With the error control mechanisms, the probabil-
ity that the approximate error is within the given error bound
at the final output increases at least δ(1− δ).

Proof. Given the specified confidence δ, the possibility that
two sampling results both have large errors is (1− δ)2. There
is at least 1−(1−δ)2 probability to ensure that the approximate
error is within ±εS . Therefore, the proposed detection method
can improve at least 1− (1− δ)2 − δ = δ(1− δ).

For instance, assume the specified confidence δ = 90%.
With the quality monitoring mechanism, theoretically the
confidence will be raised from 90% to 99%. In practice, there
are two situations that the error detection model cannot find
when two estimated results are both larger or smaller than the
exact value (e.g.

∣∣ˆ̄v1 − ˆ̄v2
∣∣ ≤ ∆ but ˆ̄v1− v̄ > εS1

, ˆ̄v2− v̄ > εS2

). However, the probability of occurrence of the above case is
low and it’s much less than (1− δ)2.

IV. IMPROVEMENT

For better optimizing our designed approximate framework,
we additionally present some improvements from points of
weight update and stream evolution.

A. Triggered Maintenance of Stratification Weight

The initial computed weights need be dynamically adjusted
so as to better adapt to the characteristics of stream data. Ow-
ing to the continuously arriving data, the knowledge obtained
from input data is gradually accumulated and updated. With
more data knowledge, the designed sampling strategy provides
a feedback to adjust the initial weights for better sampling.

Here, we consider the weight maintenance as a triggered
update operation. Considering both computation load and

approximate quality, there are two situations that can trigger
a weight update operation:

(1) When the data arrival rate is below the specified rate
threshold Tsl that means relatively small computation over-
head, it can trigger to adjust weights of each stratum. The
sampling weights can be maintained at this stage.

(2) Besides, when the output detection module judges that
the approximated results occur a large error, it can trigger to
adjust weights to improve the accuracy of sampling results.

Here we assume that the data distribution tends to stability.
Thus, the sampling weight can be updated but not frequently
produce a large change. To ensure low update overhead
as possible, we do not need to re-calculate all weights. In
section II-A, our proposed stratification strategy is based on
the binary tree structure, and the final weights are computed
according to the parent nodes. Thus, the weight can be updated
by their parent or ancestor nodes of the upper levels. With the
above trigger conditions, the weight update algorithm (TWU)
is described as follow:

Algorithm 2 Triggered Weight Update Algorithm (TWU)
1: Receive the feedback from the sampling results;
2: Set the current level Lc = L− 1;
3: Based on the stratification tree structure, allocate the weights for

stratified sampling from the Lc level.
4: Compare results with random and stratified sampling methods.
5: if the weights of Lc level need to be updated then
6: Backtrack to the upper level;
7: Lc = Lc − 1
8: goto line 3;
9: end if

10: Update the weights from Lc to L levels based on the weight
computation method.

11: Return the updated weights to the DSS module.

To faster end the loop operation of line 5, the modification
on Lc in TWU at line 7 can also be set as Lc = Lc − 2.

B. Improvement with Stream Evolution
As the stream moves forward, the learning result of stratifi-

cation tends to be stable and the corresponding output results
will satisfy customer requirement with higher probabilities. At
this moment, an improvement can be designed to reduce the
overhead of online approximate processing.

The frequency of error control can also be reduced with
the stream evolution. The process of comparing two estimated
results can be set to execute in a sampling way. In DSPS,
our computation model is the sliding window. Videlicet, it’s
not necessary to constantly monitor the quality and we can
compare results to detect errors generated by partial windows
other than all. Referring to the idea in Paraprox [10], it can be
implemented through setting a fixed window interval N and
checks are performed every N th invocation. At other time, we
do not need to execute sampling twice.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
framework. Through comparing with ApproxHadoop [3], we
analyze the effectiveness of online error detection mechanism.

A. Experiment results

We drive experiments with the online aggregation operation,
AVG. The real dataset WikiLength, are evaluated through
analyzing lengths of web pages (bytes) [11]. The large-scale
dataset includes the December 2016 snapshot of Wikipedia
(12.6GB), which contains more than one million English
articles . We use the Sine function to control the arrival rate
of data, which is processed in sliding windows. Here denote
the statistical error of the entire dataset as εT and the current
sliding window as εw.

1) Stratification learning analysis: We first implement the
stratification strategy mentioned in section II-A. Figure 4 il-
lustrates the detailed process of weight change through stream
data learning. The initial weight of each strata is allocated
equally and then updated with new arriving data. As described
in Section II-A, a three-level binary tree is constructed and the
value range of page length is partitioned into four strata. The
accurate ratio of each stratum is also listed in the rightmost
histogram of Figure 4. At the end of learning, the estimated
weights in the first stratum is about 0.8382 compared with the
accurate value 0.8405. We can see that the weight learning
process gradually approaches the exact values and the final
weight result is nearly consistent with them.

2) Effects of window size: As shown in Figure 5, we change
the window size form 1000 to 4000 under different sampling
ratios (0.05 and 0.1). When setting the sampling ratio 0.05, the
approximate accuracy computed under each processing win-
dow increases by about 83% shown in Figure 5. For instance,
when the window size becomes 4000, the approximate error
reduces to 0.02. The reason is that the larger window sizes
can obtain a more comprehensive data information, which is
critical for a good learning result.

3) Effects of error control: We test the variation of εw
with different ∆, which reflects the effect of quality control in
the case of unknown exact results. In the experiments, when
detecting

∣∣ˆ̄v1 − ˆ̄v2
∣∣ > ∆, the error control module will give

a feedback to adjust weights as described in Figure 3. Here
we fix the sampling ratio 1% and vary ∆ from 30 to 200.
Shown in Figure 6, when enlarging the difference of detecting
large errors, the average window error increases accordingly at
different window sizes. It indicates that the accuracy of results
will be reduced when we relax the criterion of error detection.
Experiments show that online error detection can decrease the
accuracy loss and improve the output quality.

As mentioned in section IV-B, the overhead of error control
can be optimized through error checking every N th invocation.
Next, we analyze the effects of setting different frequencies
N(e.g. 1,2,4) to εT when varying the sampling ratio. Shown
in Figure 7, the sampling error is increased when reducing
the error control frequency while the corresponding sampling
cost is reduced. The symbol N : 1(1000) means the number of
processing windows that we perform error checking is 1000.
Figure 8 shows the comparison of accuracy loss with different
sampling ratios when sampling with the methods of IncApprox
and the addition of the error control mechanism. The results

Figure 4: Weight learn-
ing result.

Figure 5: Effects of win-
dow size.

Figure 6: Effects of dif-
ferent threshold ∆ .

Figure 7: Effects of error
control frequency N th.

Figure 8: Comparison
with IncApprox.

also indicate that the error control strategy can contribute to a
better approximate result.

VI. RELATED WORK

More and more large data researches concentrate on ap-
proximate streaming computing using sampling techniques
[12]. For instance, Aggarwal et al. designed a temporal biased
reservoir sampling [13] with the effect of time during stream
data continuously arriving. Although these common sampling
methods are available for streams, it’s still inefficient without
considering the context of stream data. In recent works,
Krishnan et al. [3] implemented a stratified reservoir sampling
algorithm based on Spark framework. The initial sampling
proportion depends on the number of items seen in the current
sliding window and will be adjusted periodically. For stratified
stream sampling, [14] proposed two challenges faced: the
choice of the size of samples inside each stratum and the
number of strata is still difficult since the knowledge of data
is unknown. To overcome these limitations, we propose a
online tree-based data learning strategy to divide data items
and allocate appropriate weight for each stratum. In [6], Yan et
al. proposed an error-bounded stratified sampling technique to
minimize the sample size. They need to know the knowledge
of data distribution and make sorting for data, which may
not be practical for online arriving data. Thus, to make
improvement, we design a hash mapping method to stratify
the arrived data to the corresponding strata.

Besides, most of studies tend to provide a theoretical error
guarantee proved by the probability theory [9], [15]. However,
the output quality may not be ensured and it’s possible that
estimated results are unsatisfactory for customers owing to the
probability of sampling. There exist a few quality management
strategies to control quality when using approximate tech-
niques from the point of the system level [16]. In our paper,
we target the real-time stream processing and also propose a
customized error control mechanism to assure output quality.

VII. CONCLUSION

In this poster, we consider the problems of online data
cognition and error control in real-time stream processing. We
design an adaptive approximate processing framework to tack-
le these problems. The framework provides an online learning
strategy to relieve the limitation of unknown knowledge for
constantly arriving data. Then a dynamic sampling scheme is
designed to make a self-adjusting computation. For different
user requirements, we propose a customized error control

mechanism to detect approximate results. Experiment results
with real-world datasets show that our proposed approximate
framework can adapt to real-time stream processing and also
make efficient approximation with online quality control.

ACKNOWLEDGMENTS

This work is supported by National Natural Science
Foundation of China (NSFC) (Grants No.61772228), Na-
tional Key research and Development Program of China
(Grant 2017YFC1502306, 2016YFB0701101), Jilin Scientific
and Technological Development Program (20160203008GX,
20170520066JH), Graduate Innovation Fund of Jilin Univer-
sity.

REFERENCES

[1] “CAIDA. Center for applied internet data analysis,” http://www.caida.
org/home/, [Online; accessed 26-June-2017].

[2] M. Tang and F. Li, “Distributed online tracking,” in Proceedings of the
2015 ACM SIGMOD. ACM, 2015, pp. 2047–2061.

[3] D. R. Krishnan, D. L. Quoc, P. Bhatotia et al., “IncApprox: A data ana-
lytics system for incremental approximate computing,” in International
Conference on WWW, 2016, pp. 1133–1144.

[4] S. Agarwal, B. Mozafari, and A. Panda, “BlinkDB: queries with bounded
errors and bounded response times on very large data,” in ACM European
Conference on Computer Systems, 2013, pp. 29–42.

[5] D. S. Khudia, B. Zamirai, M. Samadi et al., “Rumba: an online qual-
ity management system for approximate computing,” in International
Symposium on Computer Architecture, 2016, pp. 554–566.

[6] Y. Yan, L. J. Chen, and Z. Zhang, “Error-bounded sampling for analytics
on big sparse data,” Proceedings of the VLDB Endowment, vol. 7, no. 13,
pp. 1508–1519, 2014.

[7] N. Laptev, K. Zeng, and C. Zaniolo, “Early accurate results for advanced
analytics on mapreduce,” Proceedings of the VLDB Endowment, vol. 5,
no. 10, pp. 1028–1039, 2012.

[8] “RIP. Routing information protocol,” https://en.wikipedia.org/wiki/
Routing Information Protocol, [Online; accessed 22-Feb-2018].

[9] S. Lohr, Sampling: design and analysis. Nelson Education, 2009.
[10] M. Samadi et al., “Paraprox:pattern-based approximation for data par-

allel applications,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 35–50,
2014.

[11] “Wikipedia. wikipedia database,” http://en.wikipedia.org/wiki/
Wikipedia database, [Online; accessed 28-Oct-2017].

[12] P. S. Efraimidis, “Weighted random sampling over data streams,” in
Algorithms, Probability, Networks, and Games. Springer, 2015, pp.
183–195.

[13] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream
evolution,” in Very Large Data Bases, 2006, pp. 607–618.

[14] D. J. e. a. El Sibai R, Chabchoub Y, “Sampling algorithms in data stream
environments,” in IEEE ICDEc, 2016, pp. 29–36.

[15] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[16] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, p. 62, 2016.

